Python中的装饰器

Python中的装饰器

Python中的装饰器用的较为普遍,大致思路是在函数运行前后封装一些操作,以实现诸如如打印日志、统计运行时间、保存中间变量的效果。本文通过几个实例说明装饰器的基本用法和应用场景。

1.引子

浏览网上各种解释装饰器的文章,提到最多的就是斐波那契数列的计算,这里先给出基础的计算斐波那契数列的函数:

1
2
3
4
5
def fib(n):
if n <= 2:
return n - 1
else:
return fib(n - 1) + fib(n - 2)

以上代码采用递归的方式计算第n个斐波那契数,其实这种递归计算方法会产生很多重复计算,我们将fib(5)的计算拆解开:

1
2
3
4
5
6
7
             fib(5)
/ \
fib(4) fib(3)
/ \ / \
fib(3) fib(2) fib(2) fib(1)
/ \
fib(2) fib(1)

从上面图中可以看到,fib(3)计算了2次,fib(2)计算了3次,fib(1)计算了2次,如果能将递归过程中的中间变量存储起来,就可以节省出很多时间,这里用装饰器的方法存储这些中间变量,首先给出代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def cache(f):
cache_dict = {}

@wraps(f)
def _cache(n):
if n in cache_dict.keys():
return cache_dict[n]
else:
cache_dict[n] = f(n)
return cache_dict[n]

return _cache

@cache
def fib(n):
if n <= 2:
return n - 1
else:
return fib(n - 1) + fib(n - 2)

我们在装饰器中定义了一个全局的dict,用来存储第i个斐波那契值,每次计算fib(i)之前先去dict中查看是否已经缓存改值,如果缓存了直接从dict中取,否则计算fib(i)并写入dict中。

以上就实现了通过装饰器缓存部分变量,达到减少重复计算的目的,下面我们来了解一下装饰器的运行机制,以及变量的生命周期。

2.装饰器原理剖析

从上面斐波那契数列的例子可以看到,装饰器其实是一个接受函数做参数,返回值为函数的函数。笼统的可以概括成以下的形式:

1
2
3
4
5
6
7
8
9
10
11
12
def decorator(f):
def _wrap(args):
do somthing
result = f(args)
do somthing
return result
retun _wrap


@decorator
def foo(args):
do somthing

返回的函数其实包括了要运行的函数,并在函数运行前后做了若干操作。那当我们调用foo(args)到底发生了什么呢?

当显示的调用foo(args)时,可以认为先执行了装饰器函数decorator(f),装饰器函数返回了函数_wrap(args), 整体的调用顺序即是
decorator(f)(args),为了验证这个的结论,我们将上面斐波那契数列的例子修改一下,执行下面的语句:

1
2
3
4
5
6
print fib(20)
print cache(fib)(20)

#output
4181
4181

可以看到两种输出方式结果是一致的, 从而验证了对于装饰器调用顺序的结论。为了更好的理解装饰器的调用顺序,这里对引子中的例子进行修改,再增加一层装饰器,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

def cache(f):
cache_dict = {"test": "foo"}

@wraps(f)
def _cache(n):
if n in cache_dict.keys():
return cache_dict[n]
else:
cache_dict[n] = f(n)
return cache_dict[n]

return _cache


def record(f):
@wraps(f)
def _wrap(n):
start_time = time.time()
result = f(n)
end_time = time.time()
logger.info('f_name:%s, n:%s, cost_time:%s', f.__name__, n, end_time - start_time)
return result

return _wrap


@record
@cache
def fib(n):
if n <= 2:
return n - 1
else:
return fib(n - 1) + fib(n - 2)

可以看到增加了record装饰器,作用是记录函数运行时间,先调用一下fib(20),看看结果:

1
2
3
4
5
6
7
8
2017-12-05 21:03:12,115 [140735241039872] - [decorate_learn.py 32] INFO n:2, cost_time:9.53674316406e-07
2017-12-05 21:03:12,115 [140735241039872] - [decorate_learn.py 32] INFO n:1, cost_time:3.09944152832e-06
2017-12-05 21:03:12,115 [140735241039872] - [decorate_learn.py 32] INFO n:3, cost_time:0.000406980514526
2017-12-05 21:03:12,115 [140735241039872] - [decorate_learn.py 32] INFO n:2, cost_time:2.14576721191e-06
2017-12-05 21:03:12,116 [140735241039872] - [decorate_learn.py 32] INFO n:4, cost_time:0.000722885131836
2017-12-05 21:03:12,116 [140735241039872] - [decorate_learn.py 32] INFO n:3, cost_time:3.09944152832e-06
2017-12-05 21:03:12,116 [140735241039872] - [decorate_learn.py 32] INFO n:5, cost_time:0.00133514404297
3

可以看到每次调用fib(n)函数的时间都被打印出来,如上面对装饰器调用顺序的结论,这里同样跑一下record(cache(fib))(5),得到如下结果:

1
2
3
4
5
6
7
8
9
2017-12-05 21:09:35,869 [140735241039872] - [decorate_learn.py 32] INFO n:2, cost_time:2.86102294922e-06
2017-12-05 21:09:35,869 [140735241039872] - [decorate_learn.py 32] INFO n:1, cost_time:3.09944152832e-06
2017-12-05 21:09:35,869 [140735241039872] - [decorate_learn.py 32] INFO n:3, cost_time:0.000430107116699
2017-12-05 21:09:35,869 [140735241039872] - [decorate_learn.py 32] INFO n:2, cost_time:1.90734863281e-06
2017-12-05 21:09:35,870 [140735241039872] - [decorate_learn.py 32] INFO n:4, cost_time:0.000657081604004
2017-12-05 21:09:35,870 [140735241039872] - [decorate_learn.py 32] INFO n:3, cost_time:2.14576721191e-06
2017-12-05 21:09:35,870 [140735241039872] - [decorate_learn.py 32] INFO n:5, cost_time:0.00082802772522
2017-12-05 21:09:35,870 [140735241039872] - [decorate_learn.py 32] INFO n:5, cost_time:0.000908136367798
3

以上研究了装饰器调用函数的流程,下面我们看下装饰器中变量的生命周期。
注意到在斐波那契数列的例子中,定义了cache_dict字典,那该字典何时被创建,何时被销毁呢,为此我们做以下实验:

1
2
3
4
5
6
7
8
9
10
11
import sys
import decorate_learn


for i in range(5):
decorate_learn.fib(i + 1)

reload(decorate_learn)

for i in range(5):
decorate_learn.fib(i + 1)

装饰器也稍作改变,每次调用的时候打印cache_dict

1
2
3
4
5
6
7
8
9
10
11
12
13
def cache(f):
cache_dict = {"test": "foo"}

@wraps(f)
def _cache(n):
logger.info('n:%s,cache_dict:%s', n, cache_dict)
if n in cache_dict.keys():
return cache_dict[n]
else:
cache_dict[n] = f(n)
return cache_dict[n]

return _cache

之所以这么做,是因为没有找到太好能够显示变量创建销毁的方法,所以每次调用装饰器的时候打印该变量,看下改变量的内容是否有被清空重建,
看下输出日志:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:1,cache_dict:{'test': 'foo'}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:1,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:4,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:5,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:4,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}
2017-12-06 09:45:07,733 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}
2017-12-06 09:45:07,734 [140735241039872] - [decorate_learn.py 16] INFO n:1,cache_dict:{'test': 'foo'}
2017-12-06 09:45:07,734 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0}
2017-12-06 09:45:07,735 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,735 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,735 [140735241039872] - [decorate_learn.py 16] INFO n:1,cache_dict:{'test': 'foo', 1: 0, 2: 1}
2017-12-06 09:45:07,735 [140735241039872] - [decorate_learn.py 16] INFO n:4,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,736 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,738 [140735241039872] - [decorate_learn.py 16] INFO n:2,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1}
2017-12-06 09:45:07,738 [140735241039872] - [decorate_learn.py 16] INFO n:5,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}
2017-12-06 09:45:07,739 [140735241039872] - [decorate_learn.py 16] INFO n:4,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}
2017-12-06 09:45:07,739 [140735241039872] - [decorate_learn.py 16] INFO n:3,cache_dict:{'test': 'foo', 1: 0, 2: 1, 3: 1, 4: 2}

从日志的输出可以看到,一次程序执行过程中,装饰器中dict是和fib函数同时存在的,只有当主程序退出时,dict才会销毁。
以上我们研究了装饰器的写法和一些简单原理,下面给出一种使用类写装饰器的方法。

3.装饰器的另一种写法

装饰器除了函数式的写法,还可以封装成类,并重写call方法即可,还是以菲波那切数列为例,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import time
from functools import wraps


class cache(object):
def __init__(self):
self.cache_dict = {}

def __call__(self, f):
@wraps(f)
def _wrap(n):
print self.cache_dict
if n in self.cache_dict.keys():
return self.cache_dict[n]
else:
self.cache_dict[n] = f(n)
return self.cache_dict[n]
return _wrap


class record(object):
def __init__(self):
pass

def __call__(self, f):
@wraps(f)
def _wrap(n):
start_time = time.time()
result = f(n)
end_time = time.time()
print 'f_name:%s, n:%s, cost_time:%s' % (f.__name__, n, end_time - start_time)
return result
return _wrap


@record()
@cache()
def fib(n):
if n <= 2:
return n - 1
else:
return fib(n - 1) + fib(n - 2)


@record()
@cache()
def foo(n):
print "foo"

# print fib(1)
print fib(20)
foo(1)

代码里需要解释的一点是我们引入了functools.wraps,目的是保持函数的类型一致。

1
2
3
4
5
6
7
8
9
10
11
12
13
#with wraps
fib(1)
print fib.__name__

#out
#fib

#without wraps
fib(1)
print fib.__name__

#out
#_wrap

从上面可以看到,加了wrap可以让函数保持原有的名字

总结

以上简单介绍了装饰器的实现方法和一些自己的小探究,笔而简之,以备阙忘。

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×